interface VectorStoreAzureAISearchNodeParameters {
embeddingBatchSize?: number;
id?: string;
includeDocumentMetadata?: boolean;
indexName?: string;
mode?:
| "update"
| "load"
| "insert"
| "retrieve"
| "retrieve-as-tool";
options?: | { clearIndex?: boolean }
| {
filter?: string;
queryType?: "vector" | "hybrid" | "semanticHybrid";
semanticConfiguration?: string;
};
prompt?: string;
toolDescription?: string;
toolName?: string;
topK?: number;
useReranker?: boolean;
}Properties§
Source§readonly include Document Metadata?: boolean
readonly include Document Metadata?: boolean
Whether or not to include document metadata Default: true
Source§readonly index Name?: string
readonly index Name?: string
The name of the Azure AI Search index. Will be created automatically if it does not exist. Default: "n8n-vectorstore"
Source§readonly mode?:
| "update"
| "load"
| "insert"
| "retrieve"
| "retrieve-as-tool"
readonly mode?:
| "update"
| "load"
| "insert"
| "retrieve"
| "retrieve-as-tool"
Default: "retrieve"
Source§readonly options?:
| { clearIndex?: boolean }
| {
filter?: string;
queryType?: "vector" | "hybrid" | "semanticHybrid";
semanticConfiguration?: string;
}
readonly options?:
| { clearIndex?: boolean }
| {
filter?: string;
queryType?: "vector" | "hybrid" | "semanticHybrid";
semanticConfiguration?: string;
}
Default: {}
Source§readonly prompt?: string
readonly prompt?: string
Search prompt to retrieve matching documents from the vector store using similarity-based ranking
Number of documents to embed in a single batch Default: 200